Aligned Carbon: Nanotubes for Integrated Circuits & 1000x Improvement in Computing

J Provine Aligned Carbon

Motivation

Universal Challenge: Integration of logic with other semiconductor technologies Integrating high performance transistors monolithically as the last layer or the middle layer of a chip enables:

- Simplified packaging Less chips to integrate, smaller packages.
- Improved performance No communication bottlenecks between chips
- Lower power consumption No high speed links or retimers

CNT-Based Monolithic 3D

75x improvement in energy delay product (EDP) using 8 generation old silicon

technology node

Approach

After Purification

Post-Transfer

............

Oxidized Silicon

Target Wafer

As Grown

Pre-Transfer

CNTs 🔪

Quartz Growth

Wafer

Metal CNTs

1) Aligned Growth

- Growth of high-density single walled aligned Carbon NanoTubes (CNTs) on quartz wafers
- CMOS compatible catalyst stripes with >>100 µm long **CNTs**
- Leverages best known techniques and custom growth systems

2) Purification

- •Key company IP
- •In-situ removal of metallic CNTs on the growth wafer (prior to transfer)
- Avoids need to build additional circuitry to induce electrical breakdown on target wafer
- Avoids wet bench processing of target wafer

3) Transfer

•If needed, multiple transfers can increase density on target wafer

- *CNTs are embedded in a CMOS

Purification § Semiconducting CNT Metallic CNT Purified Thermally Top View patternable mask Cross section view - not to scale As grown mix Remove of CNTs polymer mask trenches CNTs

Wafer-scalable, high throughput method

Zero additional mask layers for target wafer

Purification Initial Results

Using electrical bias to selectively open up trenches

- Transferred CNT material to target wafer and processed target wafer with 3 mask layers to enable bias to be applied and selectively heat the metallic CNTs.
- Micron-scale trenches opened in resist along metallic CNTs

Using Aligned Carbon approach to selectively open up trenches

- CNT growth wafer covered in thermally responsive polymer and exposed leaving open trenches along the entire length of metallic CNTs
- Promising results are being optimized

Electrical Patterning

5µm

Versus State of the Art

Figure 3.1. (a) Non-aligned layout style on uncorrelated CNT growth (b) Non-aligned layout style on directional CNT growth and (c) Aligned-active layout style on directional CNT growth.

350x lower probability of device failure

- **26.5x** lower probability of device failure is from building CNT Field Effect Transistors (FETs) on long, aligned CNTs
- 13x lower probability of device failure is from aligned-active layout technique (i.e. spatial correlation of FETs with the same CNTs)

Improved Transistor Performance

- Significantly lower (~100x) device failure when employing active-align layout techniques with long (>100μm) CNT arrays
- More uniform CNT FET voltage transfer curves due to highly aligned, uniform, and pure **CNTs**
- Increased current density, transconductance, and lower threshold voltage of CNT FETs due to higher quality, (lower impurities and defects relative to solution-based purification) aligned CNTs

Improved Manufacturability

- Uniform CNT coverage over entire wafer
- No wet processing, consistent with High Volume Manufact. foundry approaches
- Avoids CNT aggregation & metal contamination associated with solution-based CNT purification materials
- Simplifies foundry process and supply chain

Contact J Provine (CEO) j@alignedcarbon.com